Two-dimensional ¹H- and ¹³C-NMR Spectra of some Azo Dyes Containing Amino or Acetamido Groups

Antonín Lyčka, Josef Jirman

Research Institute of Organic Syntheses, 532 18 Pardubice-Rybitvi, Czechoslovakia

&

Poul Erik Hansen

Institute of Life Sciences and Chemistry, University of Roskilde, PO Box 260, 4000 Roskilde, Denmark

(Received 17 March 1988; accepted 29 April 1988)

ABSTRACT

The ¹H- and ¹³C-NMR spectra of 12 azo dyes containing amino or acetamido groups have been measured. Two-dimensional H,H-COSY, NOESY, H,C-COSY and COLOC spectra and one-dimensional selective INEPT spectra have been used in the assignment of ¹H and ¹³C chemical shifts. Hydrogen bonding has also been studied in these compounds.

1 INTRODUCTION

About 15% of azo dyes¹ are prepared by coupling diazonium salts with anilines and naphthylamines as the passive components. The coupling products can be very well characterized by their $^{1}\text{H-,}^{2}$ $^{13}\text{C-}$ and $^{15}\text{N-NMR}$ spectra.^{3,4} Minimal temperature dependence of $\delta(^{15}\text{N})^3$ and $^{1}J(^{15}\text{N}^{15}\text{N})^3$ allows a conclusion that these compounds exist practically fully in their azo forms in a broad temperature range, in deuteriochloroform or hexadeuteriodimethyl sulphoxide solutions, under NMR measurement conditions. It is very difficult to assign unambiguously all ^{13}C and ^{1}H chemical shifts at a

low magnetic field (≤ 2.35 T). High-field (≥ 7 T) NMR measurements and application of two-dimensional NMR spectroscopy^{5,6} should provide unambiguous assignment of both ¹H and ¹³C chemical shifts in such azo dyes.

The aim of this work was to assign by two-dimensional NMR methods ¹H and ¹³C chemical shifts in 12 azo dyes containing amino or acetamido groups, in order to complete and/or inspect the previously published data.³ Unambiguous assignments of both ¹H and ¹³C chemical shifts will serve for better understanding of spectral and physical properties of these compounds.^{7,8} Furthermore, ¹H and ¹³C chemical shifts can be used to gauge the hydrogen-bond structure of these compounds.

2 EXPERIMENTAL

Compound Ia (Scheme 1) was prepared from the corresponding triazene by a rearrangement in acidic medium. Compound IIa was isolated by column chromatography as a by-product from crude Ia. Compounds IIIa, Va and VIa were prepared by coupling benzenediazonium chloride with naphthylamines. Compound IVa was obtained by coupling benzenediazonium fluoroborate with 1-naphthylamine in methylene chloride. Compounds Ib-VIb were prepared by acetylation using acetic anhydride.

 1 H- and 13 C-NMR spectra were measured at 400·13 MHz and 100·61 MHz, respectively, using a Bruker AM 400 spectrometer. The spectra were recorded for ca. 15% or saturated (in case of poor solubility) solutions in hexadeuteriodimethyl sulphoxide ($[^{2}H_{6}]$ -DMSO) or deuteriochloroform ($C^{2}HCl_{3}$) at 300 K. The deuterated solvents were used as internal lock substances. The 1 H and 13 C chemical shifts were referred to the signal of solvent ($[^{2}H_{6}]$ -DMSO: $\delta(^{1}H) = 2.55$, $\delta(^{13}C) = 39.6$) or internal tetramethyl-silane in $C^{2}HCl_{3}$ ($\delta = 0.00$). One-dimensional 1 H- and 13 C-NMR spectra were measured in a standard manner at digital resolution ca. 0·2 Hz/point (1 H) and 1 Hz/point (13 C), respectively. The measurement conditions of two-dimensional H,H-COSY, NOESY, H,C-COSY and COLOC were described in Ref. 12 (they were slightly modified when necessary). The one-dimensional selective INEPT spectra were measured according to Ref. 13, measurements being optimized for $^{3}J(^{13}$ CH). These are in the range 4–12 Hz according to Ref. 14.

3 RESULTS AND DISCUSSION

The values of ¹H and ¹³C chemical shifts in compounds Ia,b-VIa,b are collected in Tables 1-4. The ¹H chemical shifts were, in general, assigned

Scheme 1.

TABLE 1

1H Chemical Shifts in Compounds Ia-VIa and Ib-VIb

Compound						Proton no.	10.				
I	2	٤.	4	5	9	7	8	7.	3,	4,	NHR¢
la"	7.85	6.72	STANDARD TO THE PROPERTY OF TH		***************************************			7.89	7-51	7-43	40.4
Iab	7-77	6.77	1	1	чения	i	l	7.82	7.55	7-46	6.18
IIa ª	1	6.49	7.02	89.9	7.79	1	-	7.73	7.31	7.23	5.71
$\Pi \mathbf{a}^b$		7.04	7.29	92.9	7-82	1		7-99	7.58	7-48	7-14
IIIa"	1	6.75	7.57	7.26	7.28	7.51	8.85	7.86	7.45	7.33	7.38
$IIIa^b$	1	7-23	7.81	7.78	7.36	7.58	8.80	7-98	7.58	7-45	8-90
IVa^a	1	7.88	7.13	7.65	7-42	7.30	7.77	7.79	7.40	7-32	6.34
\mathbf{IVa}^b	ł	8.14	7.28	7.87	7.65	7-65	8.73	8.17	7.62	7-50	8:04
Va^a	6.63	2.86	1	9-01	7.56	7-41	7-63	7-95	7.46	7.36	4.43
\mathbf{Va}^b	7.03	8.14	1	9.13	7.76	7.61	8.43	8. 40.	7.59	7-45	7.11
VIa^b		8-42	1	00-6	7-84	7-70	8·70	Ą	P	79	8.32
IP 6.e	7.93	7.87	1	1	Personal	1		7.90	7.62	7.58	10-38
IIPa,5		8.62	7-40	7.10	7.78	1	ļ	7-80	7.49	7-47	10.01
11P p. g	J	8.34	7.56	7-25	7-75]	1	8.07	99.	7.63	10.14
IIIP a.h	I	8.83	7.81	7-73	4.4	7-55	8.81	7.84	7.53	7-49	12.84
IIIP 5.1	1	8.72	8·16	8.03	7.62	7-73	8-89	8·14	7.73	19-1	12.30
$\mathbf{IVb}^{b,j}$		99.8	8.03	7-93	7.55	1.67	8.81	8-01	1.67	7.61	12.01
$\mathbf{V}\mathbf{b}^{b,k}$	8.09	7.92	1	9.02	7.81	7.76	8.35	8.09	69-L	7.64	10.25
VIP ^{b./}	1	8.17	1	6.05	7.92	98∙2	8:38	E	E	E	10.55
^a C ² HCl ₂ . ^b [² H ₆]-DMSO. ^c R = H or COCH ₃ (see Scheme 1). ^d 812; 7:58; 7:52 or 8:04; 7:63; 7:52.	MSO. COCH ₃	(see Sche 8.04; 7.63	me 1).	on 12	\(\delta(COCH_3) = \delta(COCH_3) = \del	= 2·20. = 2·27. = 2·20. = 2·30.	* - #	$\delta(COCH_3) = 2.32.$ $\delta(COCH_3) = 2.38.$ 7.65-8.15 for both	δ (COCH ₃) = 2·32. δ (COCH ₃) = 2·38. 7·65–8·15 for both H(2)–H(4') and H(2")–H(4").	–H(4') and I	H(2")-H(4"
、るてしてロ	0 = 7.10			•	a(COCH3)=	= 2.74.					

Carbon no.	Compound						
	Ia a,c	Ia b,c	IIaª	IIa ^b			
1	145.3	143-3	136·7 ^{e,g,i}	135.9 e.g.i			
2	125.0	125.5	142·8 ^{f.h}	145·1 f.h			
3	114.5	114.5	116·8 ^{g,t}	117·2 ^{g,i}			
4	149.5	149.5	132.0	132.6			
5			117·0°	115·7°			
6		_	127·2 ^f	125·5 f			
1′	152-8	152.7	152.6	152.6			
2′	122-2	122-1	121.9	122-1			
3′	128-9	129-4	128-8	129-2			
4′	129-7	129.6	129.7	129.9			

TABLE 2

13C Chemical Shifts in Compounds Ia and IIa

TABLE 3
¹³ C Chemical Shifts in Compounds III ^a -VIa

Carbon				Compound			
no.	IIIaª	IIIab	ľVa"	IVa*	Va*	Vab	VIa ^b
1	127-0	125·3 ^{d,i}	141.6	144-21	146.21	150.41	148·3ª
2	138-4"	140·2 e.f	132·5°	131·3°	109·0 ³	107-6	129-9
3	119-5	120-1	121.5	120-4	113.9	112-5	104-2
4	133-6	133-8	117.8	116·4 ⁵	140·3 ^{c.f}	137·2 ^{c.f}	137·0 ^f
4a	127-49.1	126.5d.g.i	135·6 ¹	135-61	133-14	133-51	133.8d.g.
5	128-0	128-1	128·6°	128·3°	124.0	122.9	123.3
6	123-2	122.8	128-1	128-51	127·0 ⁱ	127-5'	129-6
7	127.6	127-6	125.3	125-2	125·2 ^f	124·4 ^f	125·8 ^f
8	122-1	121.0	121-9	124-1	120-5	122.8	124-2
8a	134·8 e.f	134·3 e.5.h	124·1°	124·2 e.f	122.34.53	121·5°·J	123·5 ^f
1'	153.7	153-3	153-4	153-1	153-6	153-4	k
2′	121.9	121-4	122-1	122-1	122-6	122-0	k
3′	129-1	129-3	129-0	129-1	129-0	129-2	k
4'	128-9	128.7	129-5	129-3	129.7	129-1	k

^a C²HCl₃.

^a C²HCl₃.

^b [²H₆]-DMSO.

Data from Ref. 21.

^{d-i} Most important correlations in COLOC spectrum via ${}^3J(CH)$: $H(2)^d$; $H(3)^e$; $H(4)^f$; $H(5)^g$; $H(6)^h$; NH_2^i .

^b [²H₆]-DMSO.

^{c-j} Most important correlations in COLOC or selective INEPT spectra via ³J(CH): H(2)^c; H(3)^d; H(4)^c; H(5)^f; H(6)^e; H(7)^h; H(8)^c; NH^j.

^k 153·0/152·6 [C(1') or C (1")]; 122·5/122·3 [C(2') or C(2")]; 129·0/129·2 [C(3') or C(3")]; 130·0/129·9 [C(4') or C(4")].

Carbon	Compound								
no.	Ib ^a	IIb ^a	ПР	IIIba	IIIP	IVb*	Vb ^a		
1	147:0	141·0 ^{d,f}	138·6 ^{d,f}	130·4 ^{d,i}	129·6 ^{d,i,j}	130·4 ^d	137.64.		
2	123.8	137-29	135-8#	129.5	129-4	129-3	120-0		
3	119-3	122·6 ^f	120·1 ^f	120.0	119·4 ^j	119-8	111.9		
4	142.5	132.3	132.7	133.3 f	133-8	133·0 ^f	143·5 ^f		
4a	_	_		130·0 ^{d,g,1}	130·2 ^{d.1}	129·8 ^{d,i}	131·5d,1		
5	_	123·9 ^d	123·2d	128.0	127-8	127.8	123-1		
6	_	116.4	121.0	125.5"	125.2"	125.3	127.31		
7	_		_	128·1 ^f	127-5	127.8	126·4 ^f		
8		_	_	123-0	123-3	122.9	122.9		
8a	_	_	_	131·2°.f	133·2 ^f	131·1 ^f	127·2 ^f		
CONH	169.0	168·9	168-5	169-8	170·0 ^j	169-6	169-3		
CH ₃	24.2	24.3	25.2	25.2	25.7	25.0	23.8		
1'	152-2	152-2	152-2	152.0	152-3	152.0	152.7		
2'	122-4	123-2	122.5	122.4	122-2	122-2	122-8		
3'	129-4	129-4	129-2	129-6	129-3	129-4	129.5		
4'	131.0	131.6	131.2	131.5	130.9	131-2	131.3		

TABLE 4

13C Chemical Shifts in Compounds Ib-Vb

after analysis of homonuclear shift-correlated spectra 5,6 (H,H-COSY). With compounds having protons in the peri position of the naphthalene residue, NOESY 5,6 spectra were measured showing cross-peaks formation between H(4) and H(5). Heteronuclear shift-correlated spectra 5,6 (H,C-COSY) were used for the assignment of appropriate C-H pairs, whilst COLOC spectra 15 or one-dimensional selective INEPT spectra 13 [both via $^3J(^{13}\text{CH})$] were measured for assignment of ^{13}C chemical shifts of quaternary carbons. The results were mutually compared and inspected. Some applications of the above-mentioned two-dimensional NMR techniques in analysis of ^1H - and ^{13}C -NMR spectra of azo dyes are given in Refs 12 and 16.

The assignment of both 1H and ^{13}C chemical shifts in Ia was straightforward, whilst H,C-COSY had to be used for differentiation of $\delta(^1H)$ of H(2) and H(3) in Ib, the assignment of $\delta(^{13}C(2))$ and $\delta(^{13}C(3))$ being clear. The COLOC spectra based on proton-carbon long-range couplings [mostly 3J (CH) in aromatic systems as 2J (CH) and 4J (CH) are likely to be much smaller 14] are extremely useful for assignment of quaternary carbon signals. 15 In running such COLOC spectra, peaks caused by one-bond C-H coupling appear in these spectra for carbons bearing hydrogen atoms. 17 These direct C-H cross-peaks provide additional fix-points for the orientation in the spectra, as they are known from a previously performed H,C-COSY spectra. The COLOC spectrum of IIa is shown in Fig. 1. For

^a [²H₆]-DMSO.

b C2HCl3.

^{c-j} Most important correlations in COLOC or selective INEPT spectra via ³J(CH): H(2)^c; H(3)^c; H(4)^c; H(5)^f; H(6)^c; H(7)^h; H(8)^c; NH^c.

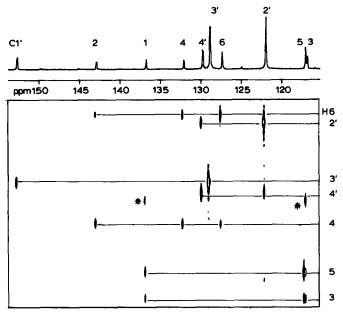


Fig. 1. COLOC spectrum of compound IIa via ${}^3J(CH)$ in C^2HCl_3 . Signals marked with asterisks correspond to correlation with folded NH₂-group protons. Measuring conditions: spectral width SW1 = 590·3 Hz, spectral width SW2 = 4098·4 Hz, data matrix 1024×128 , 32 scans during 64 time increments (zero filling in F1), $\Delta_1 = 53\cdot4$ ms, $\Delta_2 = 31\cdot0$ ms.

example, for proton H(4) we can see cross-peaks with carbon C(2) and C(6) [via ${}^3J(\text{CH})$] and C(4) [direct cross-peak via ${}^1J(\text{CH})$]. The different intensities of the cross-peaks can be ascribed to the fact that substituents cause a change in the magnitude of the three bond coupling constants. The spectrum depicted in Fig. 1 was optimized for a long-range coupling of ca. 9 Hz. Another typical feature is the existence of cross-peaks corresponding to interactions of NH₂-group protons with carbons C(1) and C(3) in **Ha**. Carbon C(1') correlates with H(3'), carbon C(2) with H(4) and H(6), carbon C(1) with H(3), H(5) and NH₂, all via ${}^3J(\text{CH})$. The different number of cross-peaks and their positions enabled us to assign unambiguously the three quaternary carbons. Couplings to NH₂ or NHCOCH₃ protons were also observed in compounds **HIb** and **Va** for which COLOC spectra were measured. A similar approach was used in the analysis of quaternary carbon chemical shifts in other azo dyes using one-dimensional selective INEPT spectra.

This approach revealed, compared with the previous assignment³ of $\delta(^{13}\text{C})$ in **IIIa**, that the chemical shifts of three carbons had to be reassigned. H,H-COSY and consecutively H,C-COSY showed that signals for C(4) and C(5) had to be interchanged and, based on selective INEPT

spectra, the signal with $\delta(^{13}\text{C}) = 134.84$ had to be attributed to C(8a) [previously C(1)]. The reassignment of C(1) is also confirmed by study of the deuterium isotope effect on ^{13}C chemical shifts. The assignment of two previously unassigned signals was also achieved. The situation was similar for $\delta(^{13}\text{C})$ in IIIb. Two-dimensional NMR spectra confirmed the $^{13}\text{C-NMR}$ data for Va and Vb and enabled completion to be made of the assignment of carbons C(6) and C(7).

Compounds IVa and IVb, as well as VIa and VIb, are reported for the first time. The ¹³C-NMR spectrum of VIb was not measured because of the extremely low solubility of this compound both in C²HCl₃ and [²H₆]-DMSO.

The compounds in this study provide a unique opportunity to study hydrogen bonds between either NH₂ or NHCOCH₃ groups and an azo moiety.

The ¹H-NMR spectra of Ia-Va in C²HCl₃ and [²H₆]-DMSO show large differences in the chemical shifts in the two solvents especially for the amino protons; but protons close to the NH₂ group, in particular the ortho aromatic protons, also show quite clearcut differences, except for Ia. An interesting case is IVa and Va. Both compounds show a very large change in the chemical shift of H(8) upon change of solvent (Table 1). Compound IVa shows, in addition, a large shift for H(2'). This is not the case for Va in which the -N=N-C₆H₅ group is far from the NH₂ group. The finding that only the nearest aromatic protons are markedly influenced is also confirmed by the ¹³C-NMR spectra of IIIa and IVa (Table 3). In these compounds C(1), C(2), C(3) and C(8) experience changes in addition to C(4a) of IIIa and C(4) of IVa. As the change in solvent causes changes in the chemical shifts of those nuclei close to the NH group, it is appropriate to associate these changes with hydrogen bonding. The fact that ³J(C, C, N, H) couplings could be established via COLOC spectra or selective INEPT spectra supports this suggestion.

Several interesting points concerning the hydrogen bonding can be raised. How strong is the hydrogen bond in these compounds, in which compounds is the hydrogen bond strongest and are the intramolecular hydrogen bonds of different strength in the two solvents?

The chemical shifts of the phenolic protons have been correlated with hydrogen-bond strength¹⁸ and an extension to amino protons is indirectly found for aromatic amines.¹⁹ This approach has some difficulties in general²⁰ as the chemical shifts may be influenced by factors other than hydrogen bonding.²⁰ A clearcut example is found in **IVa** in which one NH hydrogen is hydrogen-bonded and the other is pointing towards H(8), thus experiencing steric compression. This will likely lead to a field shift. NH chemical shifts can be used to obtain a rough picture of hydrogen bonding

despite such limitations. A comparison of NH chemical shifts of Ia-Va shows that they increase both in C²HCl₃ and in [²H₆]-DMSO in the order Ia, Va, IIa, IVa and IIIa. The amides are mostly only soluble in DMSO, in which we get the order IIb, Vb, Ib, VIb, IVb and IIIb. From these data, and bearing in mind the objections raised in Refs. 18 and 19, it can be safely concluded that IIIa and IVa are more strongly hydrogen-bonded in both solvents than the other dyes and that IIIa has the stronger hydrogen bond of the two. This also implies that the solvent is not changing the strength of the intramolecular hydrogen bond to any great extent. Among the amides, IIIb and IVb are again in their own class, as the amides only have intramolecular hydrogen bonds even in DMSO.

A picture of the hydrogen-bond pattern is thus established, a feature very important in assessing the physico-chemical properties of these compounds. The nature of the hydrogen bond will be further investigated in a paper dealing with deuterium isotope effects on ¹³C chemical shifts.⁸

A low-temperature study of IIIa and IIIb in C^2HCl_3 reveals only moderate changes in the chemical shifts, supporting the findings of Ref. 3. However, some interesting changes are seen. Changes of the order of $0\cdot1-0\cdot3$ ppm/50°C are observed for C(1), C(1') and C(4a) in both compounds and for C(3) in IIIb. The CO carbon chemical shift of IIIb also shows a temperature effect. C(2) is only tentatively identified at all temperatures, but a temperature dependence most likely exists, as well as a difference between the two compounds. The differences in chemical shifts of C(2) and C(3) can probably be ascribed to a conformational change of the acetyl group of IIIb. Similar changes observed at C(1) and C(1') are also found for IIa. A major conformational change due to breaking of hydrogen bonds is not likely, as it would be expected to change the chemical shift of C(8) dramatically, and no such effect is observed.

Concentration effects on ${}^{1}H$ chemical shifts of NHR protons were studied in compounds Ia, Ib, IIa and IIb. It was found that the changes of these chemical shifts in Ib ($C^{2}HCl_{3}$ and $[{}^{2}H_{6}]$ -DMSO) and in IIb ($[{}^{2}H_{6}]$ -DMSO) after tenfold dilution from ca. 0.25M to 0.025M solutions are lower than 0.03 ppm. Similar changes for Ia and IIa were lower than 0.12 ppm in $C^{2}HCl_{3}$ and $[{}^{2}H_{6}]$ -DMSO.

REFERENCES

- 1. Kelemen, J., Dyes and Pigments, 2 (1981) 73.
- 2. Forris, A. In *The Analytical Chemistry of Synthetic Dyes*, ed. K. Venkataraman. Wiley, London, 1977, Chapter 8.
- 3. Lyčka, A., Coll. Czech. Chem. Commun., 48 (1983) 3104.

- 4. Fedorov, L. A., Zhukov, M. S. & Ermakov, A. N., Zh. Anal. Khim., 40 (1985) 222.
- 5. Morris, G. A., Magn. Reson. Chem., 24 (1986) 371.
- 6. Ernst, R. R., Bodenhausen, G. & Wokaun, A., Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, Oxford, 1987.
- 7. Fedorov, L. A., NMR Spectroscopy of Organic Analytical Reagents and their Complexes with Metal Ions. Nauka, Moscow, 1987, Chapter 1.
- 8. Hansen, P. E. & Lyčka, A., Acta Chem. Scand, in press.
- Schündenhütte, K. H. In Methoden der Organischen Chemie (Houben-Weyl), ed. R. Stroh, Vol. 10/3. Thieme, Stuttgart, 1965.
- 10. Bredereck, K., Gülec, B. & Helfrich, B., Dyes and Pigments, 8 (1987) 265.
- 11. Bergman, E., Haskelberg, L. & Bergman, F., J. Amer. Chem. Soc., 63 (1941) 224.
- 12. Lyčka, A. & Jirman, J., Dyes and Pigments, 8 (1987) 315.
- 13. Bax, A., J. Magn. Reson., 57 (1984) 314.
- 14. Hansen, P. E., Progr. NMR Spectrosc., 14 (1981) 175.
- Kessler, H., Griesinger, C., Zarbock, J. & Loosli, H. R., J. Magn. Reson., 57 (1984) 331.
- 16. Lyčka, A., Jirman, J. & Podstata, J., Dyes and Pigments, 8 (1987) 465.
- 17. Kessler, H., Bermel, W. & Griesinger, C., J. Amer. Chem. Soc., 107 (1985) 1083.
- 18. Schaefer, T., J. Phys. Chem., 79 (1975) 1888.
- 19. Reuben, J., J. Amer. Chem. Soc., 109 (1987) 316.
- 20. Hansen, P. E., Magn. Reson. Chem., 24 (1986) 903.
- 21. Lyčka, A., Coll. Czech. Chem. Commun., 47 (1982) 1112.